Green Spaces to Improve Waterways and Communities

Thomas M. Evans, ASLA LEED AP
Green Infrastructure Design Services Director
Cleveland, Ohio

Northern Michigan Green Infrastructure Conference June 4, 2015

Green Spaces to Improve Waterways and Communities

- This topic is Chapter 15 in the recently published manual entitled *Green Infrastructure Implementation* published by the Water Environment Federation (WEF).
- Other Chapters address topics such as legal, financing, valuation, maintenance, adaptive management, feasibility, and different scales of implementation.
- Manual is intended to address both programmatic issues as well as technical approaches to implement Green Infrastructure.

Green Spaces sites for Green Infrastructure

- Green Infrastructure (GI) offers solutions to many municipal problems in addition to water quantity and quality issues
- Multiple purpose projects address issues such as water quality, neighborhood flood relief, open space, recreation, public health, beautification, and urban revitalization.
- Parks, stream corridors, golf courses, landfills, vacant and foreclosed properties represent large scale GI opportunities.

Implementation Strategies

- Case Studies illustrate a variety of funding and implementation strategies for large and small municipalities such as:
 - Inter departmental partnerships: Engineering/Streets/Sewer/Parks
 - Inter Agency partnerships:

 Metroparks/DOT/Non Profits
 - Public/Private partnerships:

 Municipalities/Developers/Corporations

Urban Stream Restoration: Flooded Property

West Creek Confluence Restoration,

Cleveland, Ohio, Northeast Ohio Regional Sewer District: 8 ac. Floodplain Restoration, 1500 LF Stream Restoration

West Creek Confluence Restoration

Post Construction:
During initial Vegetation
Establishment

Interagency Partnership, \$3M WRRSP grant funding

Urban Stream Restoration, Parks

Before After

Upper 40/Fosters Run Restoration, Mayfield Village, Oh: 3000 LF Stream Restoration, Stream Daylighting, Floodplain Restoration, Erosion Control, Bank stabilization,

Upper 40/Foster's Run Restoration

Floodplain Restoration, Erosion Control, Bank stabilization, Reduces Peak discharge 35%, \$1.2 M Clean Ohio Grant Funding, Interagency Partnership Mayfield Village - Cleveland Metroparks

Stream Restoration, Golf Courses

Pleasant Run Restoration, Indianapolis, Indiana, Indiana DOT 6300 LF Stream Mitigation, 95 ac Golf Course,

Stream Restoration, Golf Courses

Restoration measures: Floodplain Restoration, Riparian Vegetation Buffers, Balance Golf and Riparian Buffer Functions, Repairs Stream Banks Instability, Interagency Partnership Indianapolis - Indiana DOT

Stormwater Wetlands

Diagrammatic Plan of Stormwater Wetland

Design Elements:

- Forebay, SedimentDeposition
- Circuitous Wetland,Increased flow pathfor MicrobialBreakdown
- Wetland Plants,Nutrient Uptake

Stormwater Treatment Wetlands Pollutant Removal Capabilities

Pollutant	Removal Rates (%)	١
I Ollutalit	removal rates (70	"

Total Suspended Solids 75%

Total Phosphorous 45%

Total Nitrogen 25%

Organic Carbon 15%

Lead 75%

Zinc 50%

Bacteria 2 log reduction

From: Design of Stormwater Wetlands

Metropolitan Washington Council of Gov'ts

Stormwater Wetlands, Parks

Wetland Conservation Area, Columbus, Ohio, Ohio DOT: 25 ac. Open Space, 13 ac. Wetland Mitigation, Reduces peak discharges by 25%, Stormwater Treatment, Educational Land Lab to support VocEd program, Public/Private Partnership

Landfill Conversion to Green Spaces

Landfill Cap Naturalization, Wellsville, NY
Leachate Treatment Wetlands, Community Open Space, Trail
Linkages, Private Sector remediation, Public/Private Partnership

Green Roadway Corridors

I-95 Rehabilitation, Green Infrastructure Improvements,Philadelphia, Pa., Pennsylvania DOT:2 mile urban corridor, 30 GI basins, Runoff Reduction, CSO reduction, Runoff Filtration, 20 ac. Useable Urban Open Space,Trail Linkage, Neighborhood Beautification

I-95 Green Infrastructure

2 mile urban corridor, 30 GI basins, Runoff Reduction, CSO Reduction, Runoff Filtration, Basins Under Highway Bridges

Valuation of Benefits

- The multiple and Triple Bottom Line (TBL) benefits of Green Infrastructure are significant and economically quantifiable.
- The Philadelphia TBL Analysis rankings of economic benefits:
 - 1. Public Health
 - 2. Aesthetics, Property Value Increases
 - 3. Recreation
 - 4. Water Quality

Optimizing Stormwater Results

- Multidiscipline Team Required: Engineers, Landscape Architects, Biologists, Permitting Specialists
- Design to Balance and Optimize the Multiple Benefits
- Identifying Permeable Soils
- Hydraulic Modeling to reduce Flood Elevations, Peak Discharges, High velocities
- Public/Ratepayer Visibility, Public Education, Public Engagement

Green Infrastructure Implementation Strategies

- Interdepartmental Partnerships: Engineering/Streets/Sewer/Parks
- Interagency Partnerships: Metroparks/DOT/Non Profits
- Public/Private Partnerships: Municipalities/Developers/Corporations
- Grant Funding for Wetland and Stream Restoration: OEPA WRRSP, 319, SWIF, Clean Ohio

Green Spaces to Improve Waterways and Communities

Thomas M. Evans, ASLA LEED AP
Green Infrastructure Design Services Director

AECOM
Cleveland, Ohio